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Abstract. We show thatin amodel of a particle interacting with a quantum field, the field operators
rescaled according to the prescriptions of the stochastic limit, glmymmutational relations with

¢ depending on time. After the stochastic limit, due to the nonlinearity, the particle and field
degrees of freedom becoraatangleceven at a kinematical level in the sense that the field and the
atomic variables no longer commute but give rise to a new algebra with new commutation relations
replacing the boson ones. This allows to give a simple proof of the fact that the non-crossing
half-planar diagrams give the dominating contribution in a weak-coupling regime and to calculate
explicitly the correlations associated with the new algebra.

1. Introduction

In recent years there has been a great interegtdaformed commutational relations, see for
example [1-6]. In many workg-deformed relations are considered asdrmocdeformation
of the ordinary commutation relations or as a hidden symmetry algebra.

In this work we show that the so-called collective operatgrs, k) satisfy theg-deformed
commutation relations (see equation (14) below), where the paragnd¢@ends on time. The
collective operators are natural objects in the stochastic (van Hove) limit of the model describing
interaction of a particle with a quantum field. The stochastic limitis used to derive the long-time
behaviour of the system interacting with a reservoir, in particular, to derive the master equation
[7,8]. The main result of this work is that in the stochastic limitghdeformed commutation
relations give rise to the generalized quantum Boltzmann commutational relations.

We investigate a model describing the interaction of non-relativistic particle with a
quantum field. This model is widely studied in elementary particle physics, solid state
physics, quantum optics, see for example [9-12]. We consider the simplest case in which
matter is represented by a single particle or quasiparticle whose position and momentum we
denote, respectively, by = (g1, g2, g3) and p = (pa, p2, p3) and satisfy the commutation
relations §, px] = 8. The quantum field is described by boson operatgis =
(a1(k), az(k), az(k)); a'(k) = (al(k),...,al(k)) satisfying thecanonical commutation
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relations [aj(k),a,f(k/)] = 8;8(k — k). The Hamiltonian of a non-relativistic particle
interacting with a quantum field is, neglecting polarization,

H = Hyo+AH; = /w(k)aT(k)a(k) dk + 3 p? + 0 H, 1)
where is a small constanty (k) is a dispersion law and
Hy=p-Alq)+Alg) - p:= / &’k (g(k)p - €9a" (k) + (k) p - € "a(k)) + h.c. 2

The general idea of the stochastic limit is to make the time rescalirg /A% in the
solution of the Schirdinger equation in the interaction picturg” = &'#oe-i'#  associated
to the HamiltoniarH, i.e.

3 .
EU,(A) = —irAH, (1) UY U =1 ©)

with H; (1) = €'fo {,e~"Ho (the evolved interaction Hamiltonign This leads to the rescaled
equation

d [

5 Ule = = HIG /W) U, )
and one wants to study the limits, in a topology to be specified,
im 0% = ®
. 1 t 3 t _
lim —Hi\ 5 ) = H = | &k (sGp-b"Gt. k) +gk)p - b(t. k) +h.c). (6)

Moreover, one wants to prove thét is the solution of the equation
0,U, = —iH,U, Up=1. (7)

The interest of this limit equation is in the fact that many problems become explicitly integrable.
The stochastic limit of the model (1) and (2) has been considered in [7, 8, 13—15]. In this work
we use a new method. We show that the field operators sgtispnmutational relations and
use this fact to compute the stochastic limit for correlation functions and to establish the new
algebra.

The rescaling — t/A? is equivalent to considering the simultaneous limit> 0,
t — oo under the condition that’s tends to a constant (interpreted as a 1s&aw scaldime).
This limit captures the main contributions to the dynamics in a regiméoraf times and
small couplingarising from the cumulative effects, on a large time scale, of small interactions
(A — 0). The physical idea is that, looked at from the slow time scale of the atom, the field
looks like a very chaotic object: guantum white noise.e. as-correlated (in time) quantum
field b'(z, k), b(z, k) also called anaster field If one introduces the dipole approximation the
master field is the usual boson Fock white noise. Without the dipole approximation the master
field is a completely new type of white noise whose algebra is described by the relations [8]

b(t,k)yp = (p+k)b(t, k) ®)
b(t, k)b (1", k') = 2n8(t — ') §((k) + kp) 8(k — k') (9)
a(k) = w (k) + 3k% (10)

Recalling thatp is the atomic momentum, we see that the relation (8) shows that the atom
and the master field are not independent even at a kinematical level. This is what we call
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entanglementThe relation (9) is a generalization of the algebra of free creation—annihilation
operators with commutation relations

:
AAL =8

and the corresponding statistics becomes a generalization of the Boltzmannian (or free)
statistics. This generalization is due to the fact that the right-hand side is not a scalar but
an operator (a function of the atomic momentum). This means that the relations (8) and (9)
aremodule commutation relations

For any fixed valuep of the atomic momentum we obtain a copy of the free (or
Boltzmannian) algebra. Giventherelations (8)—(10), the statistics of the master field is uniquely
determined by the condition

b(t,k)¥ =0 (11)

whereV is the vacuum of the master field, via a module generalization of the free Wick theorem
(this is our theorem 2 in section 4 below).

In section 2 the dynamically-deformed commutation relations are obtained and the
stochastic limit for collective operators is evaluated. In section 3ntpeint correlation
functions of the collective operators are computed. Finally, in section 4 the stochastic limit of
n-point correlation functions is calculated.

2. Dynamical g-deformation

In order to determine the limit (3) one rewrites the rescaled interaction Hamiltonian in terms
of the rescaled fields, (¢, k):

1 t 1
- Hi <ﬁ> = XA(r/,\z) +h.c.= /d3k (k) ax(t, k) + g(k) a) (¢, k)) + h.c. (12)

The algebra of the rescaled fields in the stochastic limit will give rise to the algebra of
the master field. Using the standard commutation relatiog] = —i we obtain the rescaled
interaction
1

_e—i(z/xz) (cb(k>+kp)e—ikqa(k) (13)

1 . 4 .
(1, k) 1= 5 €4/ Hoemkaq k) el =

whered (k) = o (k) + 3k2.
It is now easy to prove that operatars(z, k) satisfy the followingg-deformed module
relations,

1
a6 k) al(t' k) = al (¢ K) ay(t. k) - gt — 1 kK + =5 qu(t — 1 (k) +kp) 8k — K')

22
(14)
a(t,k)p = (p+k)a(t, k) (15)
where
gt — 1/, x) = e 1071/ (16)

is an oscillating exponent.

This shows that the modulg-deformation of the commutation relations arises here as a
result of the dynamics and are not put artificialy initio. Now let us suppose that the master
field

b(t, k) = liinoax(t, k) a7
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exists. Then it is natural to conjecture that its algebra shall be obtained as the stochastic limit
(0 — 0) of the algebra (14) and (15). Notice that the faetor — ¢/, x) is an oscillating
exponent and one easily sees that

Mg 0 =0 lim = q,0,) = 2r50) 5(1). (18)
Then it is natural to expect that the limit of (15) is

bt,k)p = (p+k)b(t, k) (19)
and the limit of (14) gives the module free relation

b(t, k)b (1", k') = 2n8(t — 1) 8(@(k) + kp)s(k — k). (20)
Operatorsy, (¢, k) also obey the relation

ax(t1, k1) a (12, ko) = @, (12, ko) a; (11, k1) g5 (01 — 1o, kako). (21)

If we will work formally then the formal limith. — O of the left-hand side of this equation
is b(t1, k1) b(t2, ko) and of the right-hand side is(t,, ko) b(t1, k1) times zero. However, we
will prove that, in fact, the limit of the right-hand side of (21) is the same as of the left-hand
side (limit of a product does not equal to the product of limits). Therefore, the limit of (21) is
the trivial identity

b(ty, k1) b(t2, ko) = b(t1, k1) b(12, k2). (22)

An accurate proof that the relation (21) leads to (22) looks as follows. Let us consider for
example the four-point correlator

(@.(t1, k1) @ (t2, ko) ] (85, k) a} (17, k7). (23)
This corresponds to taking the matrix element of (21) between vacuum and two creation
operators. According to (14) this correlator is equal to the sum of two terms

1 / ~ 7 1 / ~ ’
2 g (t2 — 1y, w(k2) + ka(p + k1)) (k2 — kz)P q.(t1 — ty, @(ky) +kyp) 8(ky — ky)
! / 1 ! ~
xqy(t2 — ty, koks) + ﬁ @ (t1 — ty, w(ky) + k1p) 6(ky — k/z)

1 - /
X3 g (ta — 17, (ko) + kop) 8 (ko — k) . (12 — 15, kok5).

In the stochastic limit. — 0 only the first term survives. The second term vanishes
because lim,0 g, (f2 — 15, kok,) = 0. The first term survives because

1 - /
2 @tz — 1y, (ko) + ko(p + k1)) g (t2 — t5, kok?)

1 o
=3 g (tz — 13, d(k2) + ko(p + k1) + kok?).

Let us now consider the behaviour of the relation (21) in the stochastic limit. According
to (21) the correlator (23) is equal to

(@ (t2, ko) @y (11, k1) @) (th, kb) a (¢, k) gtz — 1, kaks)
1 - ,
= q; Xt — 1), kok)) (ﬁ @t — th, @(ky) + ke (p + k1)) 8 (ky — kb)
1 i
X3 g (t2 — 17, (ko) + kop) 8 (ko — k1) q5. (11 — 15, kak5)
1 / ~ / 1 / -~
45 @i (12— 1. (k) + ko) (ke — Ky) 5 43(11 — 1. (k) +kap)

x8(ky — ky) g (11 — 15, klk,2)>-
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We see that due to the terqﬁl(tz — 15, koky) only the second component of this correlator
survives after the stochastic limit. Therefore, the stochastic limit of

(@ (t2, k) @y (11, k1) a) (th, kb) a (¢, k) gtz — 15, ko)

does not equal to the product of the limit of the correlator and the Iin@t{éttz — 15, kok?)
(that is equal to zero). We have proved that at least for a four-point correlation function the
identity (22) is the stochastic limit of the relation (21).

To finish the proof we have to prove the existence of the stochastic limitpdint
correlators. This is the subject of the next section.

3. The stochastic limit of anIN-point correlator

In this section we prove the existence of the limit of ghdeformed correlators

(a5 (t1, k) .. a;" (tn, k) (24)

wherea® means eithest ora' (e = 0fora, e = 1 fora') and(-) denotes vacuum expectation.
We also will prove that the limit of this correlator will be equal to the corresponding correlator
of the master field:

(% (t1, k1) ... bV (tn, k). (25)

Let us enumerate annihilators in the prodaft(r1, k1) ... a;" (tn, kn) asay (tm;» km,),
j=1,...,J,and enumerate creatorsa:istm;, km;), j=1,...,1,1+J = N. This means
that if &,, = 0 thena;” (1, k) = a(tm,, kn;) for m = m; (and the analogous condition for
en = 1).

Let us prove the following theorem.

Theorem 1. The stochastic limit of a dynamicalfydeformed correlator exists. Moreover,

(a) if the number of creators is not equal to the number of annihilators, then the correlator
(24) is equal to zero (even before the limit);

(b) if the number of creators is equal to the number of annihilatdfs= 2n), then the limit
is equal to the following:

n

1_[ S(kmh - km;,)ZJT(S(tm/, - tm;) (S(Cb(km/,) + km;,p + Z kmu : km;,) (26)

h=1

aimy <mp<mj,

where{(m; < m_/]-) . j =1,...,n}is the unique non-crossing partition ¢f, ..., 2n}
associated witls = {1 ... ey}. Here non-crossing partition means that for arbitrary two
pairs (m; < m}), (m; < m’j) we have only the following possibilitiest; < m; < m; <
mi,mj <m, <m; <mi,m <m; < m; <mi,mj <m <m;< m’j which means
that the corresponding Wick diagram is non-crossing.

Proof. The proof of this theorem is by induction. We need to prove (26)Mo& 2n. For
n = 1 this relation is clear.
Let us assume (26) fav = 2n — 2 and prove that the same is true fér= 2n.
Letm, be the first annihilation index in (24) starting from the right. Then (24) is equal to

T T
1 n n n n n? .
<a)»(tm ) kml) ak(tm s km )(l}\ (tm +1 km +l) ceeay (tm,, km;))
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Using the commutation relation (14) this is equal to

@ty — o1 Koy o, +2) (@3 (s Fomy) -+ = @) (15 Koy #1) @ (o, » Ko) @) (b 525 Ko 42) - - 2)
1 -
+ﬁ S(km,, - km,ﬁl) (a)» (tmlv kml) R/ (tmn - tﬂl”-v»l’ CU(kmn) + kmnp) .. > (27)

Using the adjoint of the commutation relation (15), we comnayte,, — t,+1, @(k) +ky, p)
with all the annihilators on its right. Doing so the second term in (27) becomes

A AT T
1 n n n n n
<a)»(tm ) kml) a)»(tm s km )a)L (tm +1 km +l) <o ay (tm,, km,’,))

1 ~
X(S(km,1 - km,,+l)ﬁ qr (tm,l - tm,,ﬂv a)(km,,) + km,l (P + Z km’j>>

m/l->m,l+1
Herea means that we omit this operator in the product. Iterating this procedure (moving
a (tm,, km,) further to the right) we find that
(@ oy Koy @] (b King)
= Z (a)u (tmlv kml) te &)» (tm,, s km,,) e &)\ (tm;gv km;) e ai(tm;, s km;))

ml’g>m,,

X 1_[ qnr (tmn - tm; s km,lkm'/-)

/ /
My, <m';<mp

1 ~
Xs(km,, - km,ﬁl)ﬁ qx (tm” - tm;,s w(km”) + kmn <P + Z km&))

mg>m;3
where we make the convention that the product
1_[ g (tm,, - tm’j s kmn km;) (28)
mn<m}<m"8
isequalto 1ifg = j.
Taking the stochastic limit of this recurrent relation we see that if the product (28) is

non-trivial (not equal to 1) then the stochastic limit will be equal to zero. Using the induction
assumption we find the recurrent relation for the stochastic limit of the correlator (24),

- +
Ilm (a)\(tmp km1) te a)‘(tm{” km@))
r—0

; ~ AT T
= ianow)‘ (tmlv km1) s ay (tm,l s km,,) a, (tm,ﬁ-l’ km,l+l) s ay (tm;, s km;))

1 -
X8(Km, = Kn,+1) 55 @2 my = twyo @K, ) + ko, ( P+ D7 K ) ).
m(’3>m;;
Taking the stochastic limit and using this recurrent relation we find the statement of the theorem.
O

Theorem 2. The correlators for the master field satisfying relations (8) and (9) with
equal to the vacuum expectation in the free Fock space are equal to the stochastic limit of
the corresponding correlators for dynamicaljydeformed field (calculated in the previous
theorem).

Proof. The proof is done by computing the correlation functions using the commutation
relations listed above. We investigate the correlator

(b (11, k1) b (12, k2) . .. bV (2w, k).
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At first we simplify this correlator using (20). Obtain&dunctions we will move through
bé(t, k), using (19). We will iterate this procedure until the monomial will take normally
ordered form. Because the functiorialis equal to vacuum expectation, oihfunctions will
survive.

The correlation functiod (t,,; , k., ) b*(t,,,,,, km,) €quals

S(km}1 - km;,)zné(tm,g - tmh)(s((;)(kmh) + km/,p) (29)

and the relation (19) gives the tetm,.,, _,.. <m), K~ Fem, in the phase shift (an argument of
the lasts-function in (26)), arising from moving thi&-function throughb< (¢, k).
This finishes the proof of the theorem. O

4. Calculation of the n-point correlator

In this section we will find the exact form of tliedeformed correlators (before the stochastic
limit)

(a5*(t1, k1) ... a;" (tn, ky)). (30)
Let us prove the following lemma.

Lemma 1.

1
ay(t, k) a5 (tn. ky) ... a5 (k) — [ [ a5t =t ko)
x 1‘[%(; — twy s Kkt ) @511, Ka) a5 (i ) a3 (2, K)

1
= D8tk — k) qx(t—r,n,d)<k)+kp> [1 @G =t Kk
j=1

m,v<m’]-

< [T aatt = tw k) [ a5 =t ki)

m<m m<m/
< T @ = tw kkw) a5 (01, k2) @t Kor) a5 ). (31)

Here the notiora means that we omit the operatm} in this product.

Proof. The proof of this lemma is by induction oveéf. The first step of induction is the
relation (14) or (21). Given equation (31) fof, we will prove this formula forvV + 1. We
consider two cases.

(a) The first casesy+1 = 0. In this case using (31) fav and (21) we obtain

1
a(t, k) a5 (b, ka) . a5 (tven, kven) — @3 (= tysn, Kksn) [ [ @5 = b, Khin,)
i=1

J
< [ [ artt = tw . k) a5 (21, Ka) . a3 (tnas evsn) as (2, )
j=1
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1
= D8tk —kn)— QA(I—mew(k)"'kp) [T @t =t kkw))
j=1

m; <m

X 1_[ q)?l(l_tm;.skkm}) 1_[ q;l(t_tm,v, m,)

ml’»<m’f m,»<m}
~T
x T a1 =t khwy) a5 (1. k) a5 s K ) - a5 (2, Ky
mj<m'’;

that is exactly (31) forv + 1.
(b) The second casey+1 = 1. In this case using (31) fa¥ and (14) we obtain

1
@ (t. k) af (11 ky) @ (s kyven) — [ ] @0 =t Khi,)
i=1

J
[ [ar(t = tw, k) a5 (i1, Ka) . . a5 (2 k)
j=1

X (GI(fNﬂ, kn+1) ax(t, k) gy (t — ty+1, kkn+1)

1 -
+5(k — kN+1)ﬁqk(t — tn+1, @(k) + kP))

1
= ok —ku) qm twy, @) +kp) [ @00 = twy Khe,)
j=1

m; <m

X 1_[ 61,\_1(1 m ,kkm) l—[ q, tmi,kkm,.)

m;<m'f m; <m‘
At
< [T @t =t k) a5 (e, ka) - o) - a5 (e k)
m,’-<m’j

N
Xa, (tn+1, ky+1).

Moving the term

Sk — kN+1) QA(t — tn+1, @(k) +kp)
to the right-hand side of thls formula and commuting it with creators and annihilators using
(15) we obtain (31) fov + 1. This finishes the proof of the lemma. a

The next theorem describes the formM\point correlator.

Theorem 3.

(a) If the number of creators is not equal to the number of annihilators, then the correlator
(24) is equal to zero.

(b) If the number of creators is equal to the number of annihilatav¥s£ 2r), then the
correlation function is equal to the following sum over pair partitions:

Z 1_[ a(kmh - m,7 )\'ZQA ((tmh tm},)v (é(kmh) + kth + Z km‘x : km;,))

o(e) h= Mme<mp<m’'y

X 1_[ q)»(tmi - tm/,. s km; . km,) (32)

(m; ,m’j),(m, )i =1, nim<m; <m; <m;
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whereo (¢) = {(m; <m’) 1 j =1,...,n}is apartition of{1,..., 2n} associated with
e =(81,...,8).

Proof. The proof of this theorem is by induction over The first step of induction is obvious.
Let us assume the correlator (24) is expressed by equation (3®)foPn — 2 and prove that
the same is true fov = 2n. We consider thes2point correlator

(a5 (t1, k1) - . . a3 (tan, kon))-

It is easy to see that if this correlator is not equal to zero then the first operator is an
annihilator and the last is a creator. Without loss of generality we can consider the case when
the correlator is as follows:

(@ (s Kimy) @52 (12, k2) . . @7 (a1, k2n—1) @) (s Koy ). (33)

From lemma 1 follows the following formula for this correlator:
n 1 _
(33) = D 80kms — k) =503 (tmy — by D (Kin,) + o, p)
j=1

X 1_[ qn (tml - tmf,- s kmlkm,) 1_[ q;l(tml - tmi s kﬂ’llkm,‘)

m; <m’j <mj m; <m’/
X 1_[ qk(tml - tm; s kmlkml’) (El)» (tmp kml) e &A (tm’j s km’j) .. ) (34)
mi<m'
i~y

The productl'[mi<m,'<m< @ (tmy — I ki, ky,) in (34) arise from the products

[T @ = tw k) ] a5 = twr . ki)
mi<m_/, m:<m/J

in (31) due to cancellation of corresponding terms becausédwfictionss (k,,, — k,;) in the
correlator (32) forN = 2n — 2. We have

[T a2t = tw k) ] a5 = tuy ki)

’ ’ ’
m; <ml ﬂl‘-<ﬂ1j

[T &G —tu.khn) [] @ —tw k) [T @' = tuy, k)

1_[ qk(t - tm} s kkm,-)-
Let us prove now that the (34) is equal in fact to (32). This will give a proof of the theorem.
We have

1_[ q)Tl(tml - tm; ) kmlkm,) 1_[ qk(tml - tmf ) kmlkm})

’ ’ ’
m; <m] l‘ﬂI- <m/»

= 1_[ Q;l(tml - tm,- ) kmlkm,-) l_[ q;l(tml - tm, ) kmlkm,-)

/ ’ ’ /
mi<mj m,<mf<mi

< [T axCtm = tug komskiny) (35)

’ ’
m,-<ml-

becauser; < m;. From (32) for 2 — 2 we havek,,, = k. By using this and combining the
first product with the third we obtain

1_[ qk(tm,' - tmf ) kl?llkm;) 1_[ q;l(tml - tm,w kmlkm,)~ (36)

’ ’ ’ ’
mi<mj m1<m/-<mi
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Using the change of variables in the second product in (36)
tml - tm; = (tml - tm’j) - (tm’/ - tm;)
and the property,,, = ki, We find that (35) equals
[T @.Cn =t k) [T @ oy = twr sk [T @G =t Ko Kin)-
Substituting this into equation (34) we obtain

1
Z B(kml - ZQA (tml tm’ P w(kml) + kmlp) l_[ q> (tnn - tm,’ s kmlkm;)

’11 < 111

< T @G = tw o o) (@ ony Kon) -85 Cl Fe) ). (37)

-
mi<m';<m;

Here the notion. . .a ...) means that we omit the operatbin this correlation function. For
the (2n — 2)-point correlator in (37) we use the formula (32) tor- {my, m’}:

<&A(tmla kml) .. -&A(tln;ﬂ k, /4) .. >

= Z Ha(knh - n,

a(s—{ml,m’ D h=

1 ~
X ﬁ% ((tn;, - tn’h)v (w(knh) + knhp + Z kna . km,))

Ng<np<n'y

X 1_[ qx (tni - tn’] s kni . kn’]) (38)
(nj, n}) (ni,n))ii,j=1,...n—Ln;<n; <n’/.<n}
whereo (¢ — {m1, m’, }) ={(n; <n ) j =1 ...,n— 1} is a partition (without one pair)
of {1,...,2n} assouated witls — {ml, m'’;}. The |nd|ce5nh correspond to annihilators,,

correspond to creators.
Substituting (38) into (37) we obtain

Z S(kml - 261A (tml tm’ s w(kml) + kmlp) l_[ q> (tm tm} s kmlkm,)
mj<m’;

< 1 @ —tw . kwkn) > 1‘[5<kn,, — k)

m;<m’/. <m; a(af{ml,m

1 -
X ﬁqk (tn, — tn}])v a)(kl’lh) + kn/,p + Z kﬂa : knh

Ny <np<n'y

X 1_[ qk(tni - tn;a kni . kn;) (39)

(”lj,l’l/]»),(l’l,‘,n;);l‘,j:]. ..... n—l:nj<n,-<n’/<n’f
Itis easy to see that

n

2 > =2 (40)

J=lo(e—{my,m’}) o(e)

Using (40) and combining the first product in (39) with the third and the second product with
the fourth we obtain (32).
This finishes the proof of the theorem. O
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