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Abstract. We show that in a model of a particle interacting with a quantum field, the field operators
rescaled according to the prescriptions of the stochastic limit, obeyq-commutational relations with
q depending on time. After the stochastic limit, due to the nonlinearity, the particle and field
degrees of freedom becomeentangledeven at a kinematical level in the sense that the field and the
atomic variables no longer commute but give rise to a new algebra with new commutation relations
replacing the boson ones. This allows to give a simple proof of the fact that the non-crossing
half-planar diagrams give the dominating contribution in a weak-coupling regime and to calculate
explicitly the correlations associated with the new algebra.

1. Introduction

In recent years there has been a great interest inq-deformed commutational relations, see for
example [1–6]. In many worksq-deformed relations are considered as anad hocdeformation
of the ordinary commutation relations or as a hidden symmetry algebra.

In this work we show that the so-called collective operatorsaλ(t, k) satisfy theq-deformed
commutation relations (see equation (14) below), where the parameterq depends on time. The
collective operators are natural objects in the stochastic (van Hove) limit of the model describing
interaction of a particle with a quantum field. The stochastic limit is used to derive the long-time
behaviour of the system interacting with a reservoir, in particular, to derive the master equation
[7, 8]. The main result of this work is that in the stochastic limit theq-deformed commutation
relations give rise to the generalized quantum Boltzmann commutational relations.

We investigate a model describing the interaction of non-relativistic particle with a
quantum field. This model is widely studied in elementary particle physics, solid state
physics, quantum optics, see for example [9–12]. We consider the simplest case in which
matter is represented by a single particle or quasiparticle whose position and momentum we
denote, respectively, byq = (q1, q2, q3) andp = (p1, p2, p3) and satisfy the commutation
relations [qh, pk] = iδhk. The quantum field is described by boson operatorsa(k) =
(a1(k), a2(k), a3(k)); a†(k) = (a

†
1(k), . . . , a

†
3(k)) satisfying thecanonical commutation
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relations [aj (k), a
†
h(k
′)] = δjhδ(k − k′). The Hamiltonian of a non-relativistic particle

interacting with a quantum field is, neglecting polarization,

H = H0 + λHI =
∫
ω(k) a†(k) a(k)dk + 1

2p
2 + λHI (1)

whereλ is a small constant,ω(k) is a dispersion law and

HI = p ·A(q) +A(q) · p :=
∫

d3k (g(k)p · eikqa†(k) + g(k)p · e−ikqa(k)) + h.c. (2)

The general idea of the stochastic limit is to make the time rescalingt → t/λ2 in the
solution of the Schr̈odinger equation in the interaction pictureU(λ)

t = eitH0e−itH , associated
to the HamiltonianH , i.e.

∂

∂t
U
(λ)
t = −iλHI (t) U

(λ)
t U

(λ)
0 = 1 (3)

with HI(t) = eitH0HIe−itH0 (theevolved interaction Hamiltonian). This leads to the rescaled
equation

∂

∂t
U
(λ)

t/λ2 = − i

λ
HI (t/λ

2) U
(λ)

t/λ2 (4)

and one wants to study the limits, in a topology to be specified,

lim
λ→0

U
(λ)

t/λ2 = Ut (5)

lim
λ→0

1

λ
HI

(
t

λ2

)
= Ht =

∫
d3k

(
g(k)p · b†(t, k) + g(k)p · b(t, k) + h.c.

)
. (6)

Moreover, one wants to prove thatUt is the solution of the equation

∂tUt = −iHtUt U0 = 1. (7)

The interest of this limit equation is in the fact that many problems become explicitly integrable.
The stochastic limit of the model (1) and (2) has been considered in [7, 8, 13–15]. In this work
we use a new method. We show that the field operators satisfyq-commutational relations and
use this fact to compute the stochastic limit for correlation functions and to establish the new
algebra.

The rescalingt → t/λ2 is equivalent to considering the simultaneous limitλ → 0,
t →∞ under the condition thatλ2t tends to a constant (interpreted as a newslow scaletime).
This limit captures the main contributions to the dynamics in a regime, oflong times and
small couplingarising from the cumulative effects, on a large time scale, of small interactions
(λ → 0). The physical idea is that, looked at from the slow time scale of the atom, the field
looks like a very chaotic object: aquantum white noise, i.e. aδ-correlated (in time) quantum
field b†(t, k), b(t, k) also called amaster field. If one introduces the dipole approximation the
master field is the usual boson Fock white noise. Without the dipole approximation the master
field is a completely new type of white noise whose algebra is described by the relations [8]

b(t, k)p = (p + k)b(t, k) (8)

b(t, k) b†(t ′, k′) = 2πδ(t − t ′) δ(ω̃(k) + kp) δ(k − k′) (9)

ω̃(k) := ω(k) + 1
2k

2. (10)

Recalling thatp is the atomic momentum, we see that the relation (8) shows that the atom
and the master field are not independent even at a kinematical level. This is what we call
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entanglement. The relation (9) is a generalization of the algebra of free creation–annihilation
operators with commutation relations

AiA
†
j = δij

and the corresponding statistics becomes a generalization of the Boltzmannian (or free)
statistics. This generalization is due to the fact that the right-hand side is not a scalar but
an operator (a function of the atomic momentum). This means that the relations (8) and (9)
aremodule commutation relations.

For any fixed valuep̄ of the atomic momentum we obtain a copy of the free (or
Boltzmannian) algebra. Given the relations (8)–(10), the statistics of the master field is uniquely
determined by the condition

b(t, k)9 = 0 (11)

where9 is the vacuum of the master field, via a module generalization of the free Wick theorem
(this is our theorem 2 in section 4 below).

In section 2 the dynamicallyq-deformed commutation relations are obtained and the
stochastic limit for collective operators is evaluated. In section 3 then-point correlation
functions of the collective operators are computed. Finally, in section 4 the stochastic limit of
n-point correlation functions is calculated.

2. Dynamicalq-deformation

In order to determine the limit (3) one rewrites the rescaled interaction Hamiltonian in terms
of the rescaled fieldsaλ(t, k):

1

λ
HI

(
t

λ2

)
= 1

λ
A(t/λ2) + h.c.=

∫
d3k p(g(k) aλ(t, k) + g(k) a†

λ(t, k)) + h.c. (12)

The algebra of the rescaled fields in the stochastic limit will give rise to the algebra of
the master field. Using the standard commutation relation [p, q] = −i we obtain the rescaled
interaction

aλ(t, k) := 1

λ
ei(t/λ2)H0e−ikqa(k)e−i(t/λ2)H0 = 1

λ
e−i(t/λ2) (ω̃(k)+kp)e−ikqa(k) (13)

whereω̃(k) = ω(k) + 1
2k

2.
It is now easy to prove that operatorsaλ(t, k) satisfy the followingq-deformed module

relations,

aλ(t, k) a
†
λ(t
′, k′) = a†

λ(t
′, k′) aλ(t, k) · qλ(t − t ′, kk′) +

1

λ2
qλ(t − t ′, ω̃(k) + kp) δ(k − k′)

(14)

aλ(t, k)p = (p + k) aλ(t, k) (15)

where

qλ(t − t ′, x) = e−i(t−t ′/λ2) x (16)

is an oscillating exponent.
This shows that the moduleq-deformation of the commutation relations arises here as a

result of the dynamics and are not put artificiallyab initio. Now let us suppose that the master
field

b(t, k) = lim
λ→0

aλ(t, k) (17)
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exists. Then it is natural to conjecture that its algebra shall be obtained as the stochastic limit
(λ → 0) of the algebra (14) and (15). Notice that the factorqλ(t − t ′, x) is an oscillating
exponent and one easily sees that

lim
λ→0

qλ(t, x) = 0 lim
λ→0

1

λ2
qλ(t, x) = 2πδ(t) δ(x). (18)

Then it is natural to expect that the limit of (15) is

b(t, k)p = (p + k) b(t, k) (19)

and the limit of (14) gives the module free relation

b(t, k) b†(t ′, k′) = 2πδ(t − t ′) δ(ω̃(k) + kp)δ(k − k′). (20)

Operatorsaλ(t, k) also obey the relation

aλ(t1, k1) aλ(t2, k2) = aλ(t2, k2) aλ(t1, k1) q
−1
λ (t1− t2, k1k2). (21)

If we will work formally then the formal limitλ→ 0 of the left-hand side of this equation
is b(t1, k1) b(t2, k2) and of the right-hand side isb(t2, k2) b(t1, k1) times zero. However, we
will prove that, in fact, the limit of the right-hand side of (21) is the same as of the left-hand
side (limit of a product does not equal to the product of limits). Therefore, the limit of (21) is
the trivial identity

b(t1, k1) b(t2, k2) = b(t1, k1) b(t2, k2). (22)

An accurate proof that the relation (21) leads to (22) looks as follows. Let us consider for
example the four-point correlator

〈aλ(t1, k1) aλ(t2, k2) a
†
λ(t
′
2, k
′
2) a

†
λ(t
′
1, k
′
1)〉. (23)

This corresponds to taking the matrix element of (21) between vacuum and two creation
operators. According to (14) this correlator is equal to the sum of two terms
1

λ2
qλ(t2 − t ′2, ω̃(k2) + k2(p + k1)) δ(k2 − k′2)

1

λ2
qλ(t1− t ′1, ω̃(k1) + k1p) δ(k1− k′1)

×qλ(t2 − t ′2, k2k
′
2) +

1

λ2
qλ(t1− t ′2, ω̃(k1) + k1p) δ(k1− k′2)

× 1

λ2
qλ(t2 − t ′1, ω̃(k2) + k2p) δ(k2 − k′1) qλ(t2 − t ′2, k2k

′
2).

In the stochastic limitλ → 0 only the first term survives. The second term vanishes
because limλ→0 qλ(t2 − t ′2, k2k

′
2) = 0. The first term survives because

1

λ2
qλ(t2 − t ′2, ω̃(k2) + k2(p + k1)) qλ(t2 − t ′2, k2k

′
2)

= 1

λ2
qλ(t2 − t ′2, ω̃(k2) + k2(p + k1) + k2k

′
2).

Let us now consider the behaviour of the relation (21) in the stochastic limit. According
to (21) the correlator (23) is equal to

〈aλ(t2, k2) aλ(t1, k1) a
†
λ(t
′
2, k
′
2) a

†
λ(t
′
1, k
′
1)〉q−1

λ (t2 − t ′2, k2k
′
2)

= q−1
λ (t2 − t ′2, k2k

′
2)

(
1

λ2
qλ(t1− t ′2, ω̃(k1) + k1(p + k1)) δ(k1− k′2)

× 1

λ2
qλ(t2 − t ′1, ω̃(k2) + k2p) δ(k2 − k′1) qλ(t1− t ′2, k1k

′
2)

+
1

λ2
qλ(t2 − t ′2, ω̃(k2) + k2p) δ(k2 − k′2)

1

λ2
qλ(t1− t ′1, ω̃(k1) + k1p)

×δ(k1− k′1) qλ(t1− t ′2, k1k
′
2)

)
.
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We see that due to the termq−1
λ (t2− t ′2, k2k

′
2) only the second component of this correlator

survives after the stochastic limit. Therefore, the stochastic limit of

〈aλ(t2, k2) aλ(t1, k1) a
†
λ(t
′
2, k
′
2) a

†
λ(t
′
1, k
′
1)〉q−1

λ (t2 − t ′2, k2k
′
2)

does not equal to the product of the limit of the correlator and the limit ofq−1
λ (t2 − t ′2, k2k

′
2)

(that is equal to zero). We have proved that at least for a four-point correlation function the
identity (22) is the stochastic limit of the relation (21).

To finish the proof we have to prove the existence of the stochastic limit ofn-point
correlators. This is the subject of the next section.

3. The stochastic limit of anN -point correlator

In this section we prove the existence of the limit of theq-deformed correlators

〈aε1
λ (t1, k1) . . . a

εN
λ (tN , kN)〉 (24)

whereaε means eithera or a† (ε = 0 for a, ε = 1 for a†) and〈·〉 denotes vacuum expectation.
We also will prove that the limit of this correlator will be equal to the corresponding correlator
of the master field:

〈bε1(t1, k1) . . . b
εN (tN , kN)〉. (25)

Let us enumerate annihilators in the producta
ε1
λ (t1, k1) . . . a

εN
λ (tN , kN) asaλ(tmj , kmj ),

j = 1, . . . , J , and enumerate creators asa†
λ(tm′j , km

′
j
), j = 1, . . . , I , I + J = N . This means

that if εm = 0 thenaεmλ (tm, km) = aλ(tmj , kmj ) for m = mj (and the analogous condition for
εm = 1).

Let us prove the following theorem.

Theorem 1. The stochastic limit of a dynamicallyq-deformed correlator exists. Moreover,

(a) if the number of creators is not equal to the number of annihilators, then the correlator
(24) is equal to zero (even before the limit);

(b) if the number of creators is equal to the number of annihilators(N = 2n), then the limit
is equal to the following:

n∏
h=1

δ(kmh − km′h )2πδ(tmh − tm′h ) δ
(
ω̃(kmh) + kmhp +

∑
α:mα<mh<m′α

kmα · kmh
)

(26)

where{(mj < m′j ) : j = 1, . . . , n} is the unique non-crossing partition of{1, . . . ,2n}
associated withε = {ε1 . . . εN }. Here non-crossing partition means that for arbitrary two
pairs (mi < m′i ), (mj < m′j ) we have only the following possibilities:mi < m′i < mj <

m′j , mj < m′j < mi < m′i , mi < mj < m′j < m′i , mj < mi < m′i < m′j ; which means
that the corresponding Wick diagram is non-crossing.

Proof. The proof of this theorem is by induction. We need to prove (26) forN = 2n. For
n = 1 this relation is clear.

Let us assume (26) forN = 2n− 2 and prove that the same is true forN = 2n.
Letmn be the first annihilation index in (24) starting from the right. Then (24) is equal to

〈aλ(tm1, km1) · · · aλ(tmn, kmn) a†
λ(tmn+1, kmn+1) . . . a

†
λ(tm′n , km′n )〉.
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Using the commutation relation (14) this is equal to

qλ(tmn − tmn+1, kmnkmn+1)〈aλ(tm1, km1) · · · a†
λ(tmn+1, kmn+1) aλ(tmn, kmn) a

†
λ(tmn+2, kmn+2) . . .〉

+
1

λ2
δ(kmn − kmn+1)〈aλ(tm1, km1) · · · qλ(tmn − tmn+1, ω̃(kmn) + kmnp) . . .〉. (27)

Using the adjoint of the commutation relation (15), we commuteqλ(tmn − tmn+1, ω̃(k) + kmnp)
with all the annihilators on its right. Doing so the second term in (27) becomes

〈aλ(tm1, km1) · · · âλ(tmn, kmn) â†
λ(tmn+1, kmn+1) . . . a

†
λ(tm′n , km′n )〉

×δ(kmn − kmn+1)
1

λ2
qλ

(
tmn − tmn+1, ω̃(kmn) + kmn

(
p +

∑
m′j>mn+1

km′j

))
.

Hereâ means that we omit this operator in the product. Iterating this procedure (moving
aλ(tmn, kmn) further to the right) we find that

〈aλ(tm1, km1) · · · a†
λ(tm′n , km′n )〉

=
∑
m′β>mn

〈aλ(tm1, km1) · · · âλ(tmn, kmn) · · · â†
λ(tm′β , km

′
β
) · · · a†

λ(tm′n , km′n )〉

×
∏

mn<m
′
j<m

′
β

qλ(tmn − tm′j , kmnkm′j )

×δ(kmn − kmn+1)
1

λ2
qλ

(
tmn − tm′β , ω̃(kmn) + kmn

(
p +

∑
m′δ>m

′
β

km′δ

))
where we make the convention that the product∏

mn<m
′
j<m

′
β

qλ(tmn − tm′j , kmnkm′j ) (28)

is equal to 1 ifβ = j .
Taking the stochastic limit of this recurrent relation we see that if the product (28) is

non-trivial (not equal to 1) then the stochastic limit will be equal to zero. Using the induction
assumption we find the recurrent relation for the stochastic limit of the correlator (24),

lim
λ→0
〈aλ(tm1, km1) · · · a†

λ(tm′n , km′n )〉
= lim

λ→0
〈aλ(tm1, km1) · · · âλ(tmn, kmn) â†

λ(tmn+1, kmn+1) · · · a†
λ(tm′n , km′n )〉

×δ(kmn − kmn+1)
1

λ2
qλ

(
tmn − tm′β , ω̃(kmn) + kmn

(
p +

∑
m′δ>m

′
β

km′δ

))
.

Taking the stochastic limit and using this recurrent relation we find the statement of the theorem.
�

Theorem 2. The correlators for the master field satisfying relations (8) and (9) with〈·〉
equal to the vacuum expectation in the free Fock space are equal to the stochastic limit of
the corresponding correlators for dynamicallyq-deformed field (calculated in the previous
theorem).

Proof. The proof is done by computing the correlation functions using the commutation
relations listed above. We investigate the correlator

〈bε1(t1, k1) b
ε2(t2, k2) . . . b

εN (tN , kN)〉.
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At first we simplify this correlator using (20). Obtainedδ-functions we will move through
bε(t, k), using (19). We will iterate this procedure until the monomial will take normally
ordered form. Because the functional〈·〉 is equal to vacuum expectation, onlyδ-functions will
survive.

The correlation functionb(tm′h , km′h ) b
†(tmh, kmh) equals

δ(km′h − kmh)2πδ(tm′h − tmh)δ(ω̃(kmh) + kmhp) (29)

and the relation (19) gives the term
∑

α:mα<mh<m′α
kmα · kmh in the phase shift (an argument of

the lastδ-function in (26)), arising from moving thisδ-function throughbε(t, k).
This finishes the proof of the theorem. �

4. Calculation of then-point correlator

In this section we will find the exact form of theq-deformed correlators (before the stochastic
limit)

〈aε1
λ (t1, k1) . . . a

εN
λ (tN , kN)〉. (30)

Let us prove the following lemma.

Lemma 1.

aλ(t, k) a
ε1
λ (t1, k1) . . . a

εN
λ (tN , kN)−

I∏
i=1

q−1
λ (t − tmi , kkmi )

×
J∏
j=1

qλ(t − tm′j , kkm′j ) aε1
λ (t1, k1) . . . a

εN
λ (tN , kN) aλ(t, k)

=
I∑
j=1

δ(k − km′j )
1

λ2
qλ(t − tm′j , ω̃(k) + kp)

∏
mi<m

′
j

qλ(t − tm′j , kkmi )

×
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkm′i )

∏
mi<m

′
j

q−1
λ (t − tmi , kkmi )

×
∏
m′i<m

′
j

qλ(t − tm′i , kkm′i ) aε1
λ (t1, k1) . . . â

†
λ(tm′j , km

′
j
) . . . a

εN
λ (tN , kN). (31)

Here the notion̂a†
λ means that we omit the operatora†

λ in this product.

Proof. The proof of this lemma is by induction overN . The first step of induction is the
relation (14) or (21). Given equation (31) forN , we will prove this formula forN + 1. We
consider two cases.

(a) The first case:εN+1 = 0. In this case using (31) forN and (21) we obtain

aλ(t, k) a
ε1
λ (t1, k1) . . . a

εN
λ (tN+1, kN+1)− q−1

λ (t − tN+1, kkN+1)

I∏
i=1

q−1
λ (t − tmi , kkmi )

×
J∏
j=1

qλ(t − tm′j , kkm′j ) aε1
λ (t1, k1) . . . aλ(tN+1, kN+1) aλ(t, k)
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=
I∑
j=1

δ(k − km′j )
1

λ2
qλ(t − tm′j , ω̃(k) + kp)

∏
mi<m

′
j

qλ(t − tm′j , kkmi )

×
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkm′i )

∏
mi<m

′
j

q−1
λ (t − tmi , kkmi )

×
∏
m′i<m

′
j

qλ(t − tm′i , kkm′i ) aε1
λ (t1, k1) . . . â

†
λ(tm′j , km

′
j
) . . . a

εN
λ (tN , kN)

that is exactly (31) forN + 1.
(b) The second case:εN+1 = 1. In this case using (31) forN and (14) we obtain

aλ(t, k) a
ε1
λ (t1, k1) . . . a

εN
λ (tN+1, kN+1)−

I∏
i=1

q−1
λ (t − tmi , kkmi )

×
J∏
j=1

qλ(t − tm′j , kkm′j ) aε1
λ (t1, k1) . . . a

εN
λ (tN , kN)

×
(
a

†
λ(tN+1, kN+1) aλ(t, k)qλ(t − tN+1, kkN+1)

+δ(k − kN+1)
1

λ2
qλ(t − tN+1, ω̃(k) + kp)

)
=

I∑
j=1

δ(k − km′j )
1

λ2
qλ(t − tm′j , ω̃(k) + kp)

∏
mi<m

′
j

qλ(t − tm′j , kkmi )

×
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkm′i )

∏
mi<m

′
j

q−1
λ (t − tmi , kkmi )

×
∏
m′i<m

′
j

qλ(t − tm′i , kkm′i ) aε1
λ (t1, k1) . . . â

†
λ(tm′j , km

′
j
) . . . a

εN
λ (tN , kN)

×a†
λ(tN+1, kN+1).

Moving the term

δ(k − kN+1)
1

λ2
qλ(t − tN+1, ω̃(k) + kp)

to the right-hand side of this formula and commuting it with creators and annihilators using
(15) we obtain (31) forN + 1. This finishes the proof of the lemma. �

The next theorem describes the form ofN -point correlator.

Theorem 3.

(a) If the number of creators is not equal to the number of annihilators, then the correlator
(24) is equal to zero.

(b) If the number of creators is equal to the number of annihilators (N = 2n), then the
correlation function is equal to the following sum over pair partitions:∑
σ(ε)

n∏
h=1

δ(kmh − km′h )
1

λ2
qλ

(
(tmh − tm′h ),

(
ω̃(kmh) + kmhp +

∑
mα<mh<m′α

kmα · kmh
))

×
∏

(mj ,m
′
j ),(mi ,m

′
i );i,j=1,...,n:mj<mi<m′j<m

′
i

qλ(tmi − tm′j , kmi · kmj ) (32)
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whereσ(ε) = {(mj < m′j ) : j = 1, . . . , n} is a partition of{1, . . . ,2n} associated with
ε = (ε1, . . . , ε2n).

Proof. The proof of this theorem is by induction overn. The first step of induction is obvious.
Let us assume the correlator (24) is expressed by equation (32) forN = 2n− 2 and prove that
the same is true forN = 2n. We consider the 2n-point correlator

〈aε1
λ (t1, k1) . . . a

ε2n
λ (t2n, k2n)〉.

It is easy to see that if this correlator is not equal to zero then the first operator is an
annihilator and the last is a creator. Without loss of generality we can consider the case when
the correlator is as follows:

〈aλ(tm1, km1) a
ε2
λ (t2, k2) . . . a

ε2n−1
λ (t2n−1, k2n−1) a

†
λ(tm′n , km′n )〉. (33)

From lemma 1 follows the following formula for this correlator:

(33) =
n∑
j=1

δ(km1 − km′j )
1

λ2
qλ(tm1 − tm′j , ω̃(km1) + km1p)

×
∏

mi<m
′
j<m

′
i

qλ(tm1 − tm′j , km1kmi )
∏
mi<m

′
j

q−1
λ (tm1 − tmi , km1kmi )

×
∏
m′i<m

′
j

qλ(tm1 − tm′i , km1km′i ) 〈âλ(tm1, km1) . . . â
†
λ(tm′j , km

′
j
) . . .〉. (34)

The product
∏
mi<m

′
j<m

′
i
qλ(tm1 − tm′j , km1kmi ) in (34) arise from the products∏

mi<m
′
j

qλ(t − tm′j , kkmi )
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkm′i )

in (31) due to cancellation of corresponding terms because ofδ-functionsδ(kmi − km′i ) in the
correlator (32) forN = 2n− 2. We have∏
mi<m

′
j

qλ(t − tm′j , kkmi )
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkm′i )

=
∏
m′i<m

′
j

qλ(t − tm′j , kkmi )
∏

mi<m
′
j<m

′
i

qλ(t − tm′j , kkmi )
∏
m′i<m

′
j

q−1
λ (t − tm′j , kkmi )

=
∏

mi<m
′
j<m

′
i

qλ(t − tm′j , kkmi ).

Let us prove now that the (34) is equal in fact to (32). This will give a proof of the theorem.
We have∏

mi<m
′
j

q−1
λ (tm1 − tmi , km1kmi )

∏
m′i<m

′
j

qλ(tm1 − tm′i , km1km′i )

=
∏
m′i<m

′
j

q−1
λ (tm1 − tmi , km1kmi )

∏
mi<m

′
j<m

′
i

q−1
λ (tm1 − tmi , km1kmi )

×
∏
m′i<m

′
j

qλ(tm1 − tm′i , km1km′i ) (35)

becausemi < m′i . From (32) for 2n− 2 we havekmi = km′i . By using this and combining the
first product with the third we obtain∏

m′i<m
′
j

qλ(tmi − tm′i , km1kmi )
∏

mi<m
′
j<m

′
i

q−1
λ (tm1 − tmi , km1kmi ). (36)



3494 L Accardi et al

Using the change of variables in the second product in (36)

tm1 − tmi = (tm1 − tm′j )− (tm′j − tmi )
and the propertykm1 = km′j we find that (35) equals∏
m′i<m

′
j

qλ(tmi − tm′i , km1kmi )
∏

mi<m
′
j<m

′
i

q−1
λ (tm1 − tm′j , km1kmi )

∏
mi<m

′
j<m

′
i

qλ(tmi − tm′j , km′j kmi ).

Substituting this into equation (34) we obtain
n∑
j=1

δ(km1 − km′j )
1

λ2
qλ(tm1 − tm′j , ω̃(km1) + km1p)

∏
m′i<m

′
j

qλ(tmi − tm′i , km1kmi )

×
∏

mi<m
′
j<m

′
i

qλ(tmi − tm′j , km′j kmi )〈âλ(tm1, km1) . . . â
†
λ(tm′j , km

′
j
) . . .〉. (37)

Here the notion〈. . . â . . .〉 means that we omit the operatorâ in this correlation function. For
the(2n− 2)-point correlator in (37) we use the formula (32) forε − {m1, m

′
j }:

〈âλ(tm1, km1) . . . â
†
λ(tm′j , km

′
j
) . . .〉

=
∑

σ(ε−{m1,m
′
j })

n−1∏
h=1

δ(knh − kn′h )

× 1

λ2
qλ

(
(tnh − tn′h ),

(
ω̃(knh) + knhp +

∑
nα<nh<n′α

knα · knh
))

×
∏

(nj ,n
′
j ),(ni ,n

′
i );i,j=1,...,n−1:nj<ni<n′j<n

′
j

qλ(tni − tn′j , kni · kn′j ) (38)

whereσ(ε − {m1, m
′
j }) = {(nj < n′j ) : j = 1, . . . , n − 1} is a partition (without one pair)

of {1, . . . ,2n} associated withε − {m1, m
′
j }. The indicesnh correspond to annihilators,n′h

correspond to creators.
Substituting (38) into (37) we obtain

n∑
j=1

δ(km1 − km′j )
1

λ2
qλ(tm1 − tm′j , ω̃(km1) + km1p)

∏
m′i<m

′
j

qλ(tmi − tm′i , km1kmi )

×
∏

mi<m
′
j<m

′
i

qλ(tmi − tm′j , km′j kmi )
∑

σ(ε−{m1,m
′
j })

n−1∏
h=1

δ(knh − kn′h )

× 1

λ2
qλ

(
(tnh − tn′h ),

(
ω̃(knh) + knhp +

∑
nα<nh<n′α

knα · knh
))

×
∏

(nj ,n
′
j ),(ni ,n

′
i );i,j=1,...,n−1:nj<ni<n′j<n

′
j

qλ(tni − tn′j , kni · kn′j ). (39)

It is easy to see that
n∑
j=1

∑
σ(ε−{m1,m

′
j })
=
∑
σ(ε)

. (40)

Using (40) and combining the first product in (39) with the third and the second product with
the fourth we obtain (32).

This finishes the proof of the theorem. �
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